Effect of increased concentrations of atmospheric carbon dioxide on the global threat of zinc deficiency: a modelling study.
نویسندگان
چکیده
BACKGROUND Increasing concentrations of atmospheric carbon dioxide (CO2) lower the content of zinc and other nutrients in important food crops. Zinc deficiency is currently responsible for large burdens of disease globally, and the populations who are at highest risk of zinc deficiency also receive most of their dietary zinc from crops. By modelling dietary intake of bioavailable zinc for the populations of 188 countries under both an ambient CO2 and elevated CO2 scenario, we sought to estimate the effect of anthropogenic CO2 emissions on the global risk of zinc deficiency. METHODS We estimated per capita per day bioavailable intake of zinc for the populations of 188 countries at ambient CO2 concentrations (375-384 ppm) using food balance sheet data for 2003-07 from the Food and Agriculture Organization. We then used previously published data from free air CO2 enrichment and open-top chamber experiments to model zinc intake at elevated CO2 concentrations (550 ppm, which is the concentration expected by 2050). Estimates developed by the International Zinc Nutrition Consultative Group were used for country-specific theoretical mean daily per-capita physiological requirements for zinc. Finally, we used these data on zinc bioavailability and population-weighted estimated average zinc requirements to estimate the risk of inadequate zinc intake among the populations of the different nations under the two scenarios (ambient and elevated CO2). The difference between the population at risk at elevated and ambient CO2 concentrations (ie, population at new risk of zinc deficiency) was our measure of impact. FINDINGS The total number of people estimated to be placed at new risk of zinc deficiency by 2050 was 138 million (95% CI 120-156). The people likely to be most affected live in Africa and South Asia, with nearly 48 million (32-63) residing in India alone. Global maps of increased risk show significant heterogeneity. INTERPRETATION Our results indicate that one heretofore unquantified human health effect associated with anthropogenic CO2 emissions will be a significant increase in the human population at risk of zinc deficiency. Our country-specific findings can be used to help guide interventions aimed at reducing this vulnerability. FUNDING Bill & Melinda Gates Foundation, Winslow Foundation.
منابع مشابه
The study of humidity effect on carbon dioxide gas sensing properties of zinc oxide nanowires assisted by polyvinyl alcohol network at room temperature
In this research, Zinc oxide (ZnO) nanostructures were synthesized by low cost hydrothermal method. The grown ZnO nanostructures had a dispersed distribution with nanowire morphology and the specific surface area of about 7 m2.gr-1 which they have crystalized in hexagonal wurtzite structure. ZnO nanowires/polyvinyl alcohol network (ZP) on the epoxy glass substrate with cu-interdigited electrods...
متن کاملAn effective and ecofriendly suggestion to decrease atmospheric carbon dioxide by using NH3 gas
Global warming is increasing permanently, because the concentration of CO2 in the atmosphere is rising continuously. According to National Oceanographic and Atmospheric Administration, the concentration of CO2 in the atmosphere was 407 ppm in June 2016 and 413 ppm in April 2017 as a last record for now. If the effects of other greenhouse gases, such as CH4, N<su...
متن کاملEffect of different concentrations of Zinc and their interaction with Sodium nitroprusside (SNP) on physiological and biochemical parameters of Plantago major L. Sara Nasiri Savadkoohi1*, Sakineh Saeidi-sar2 Abbas Ali Dehpour3 and Hossein Abbaspour1
Zinc is a necessary micronutrient in plants whose deficiency can alter essential functions in plant metabolism. High concentrations of Zn can be potentially toxic to plants causing phytotoxicity by the formation of reactive oxygen species. On the other hand, sodium nitroprusside (SNP), a donor of nitric oxide (NO) can protect cells from oxidative damage produce by reactive oxygen species. In th...
متن کاملInvestigation on life cycle assessment of lead and zinc production
Lead and zinc production is one of the main predisposing factors of excessive greenhouse gases emissions, air pollution and water consumption. In this paper, the environmental problems of lead and zinc production in Calcimin plant are expressed and life cycle assessment of this plant is assessed. The data regarding the amount of induced global warming and pollution, acidification, and depletion...
متن کاملSimulation of methanol synthesis by hydrogenation of carbon dioxide recovered from combustion gases of Fluid Catalytic Cracking Unit of Abadan Refinery
Refineries produce about four percent of the global carbon dioxide emissions, close to one billion tons per year. Globally, the refining sector is the third largest producer of carbon dioxide after the electricity generation and cement industry.This greenhouse gases is a major cause of global warming and climate change and is a serious threat to human health and the environment. One way to redu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Lancet. Global health
دوره 3 10 شماره
صفحات -
تاریخ انتشار 2015